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The finite-dimensional quantum mechanics (FDQM) based on Weyrs form of 
Heisenberg's canonical commutation relations, developed for the case of one- 
dimensional space, is extended to three-dimensional space. This FDQM is 
applicable to the physics of particles confined to move within finite regions of 
space and is significantly different from the current quantum mechanics in the 
case of atomic and subatomic particles only when the region of confinement is 
extremely small--of the order of nuclear or even smaller dimensions. The 
configuration space of such a particle has a quantized eigenstructure with a 
characteristic dependence on its rest mass and dimension of the region of 
confinement, and the current SchriSdinger-Heisenberg formalism of quantum 
mechanics becomes an asymptotic approximation of this FDQM. As an example 
a spherical harmonic oscillator with a particular radius of confinement is 
considered. 

1. I N T R O D U C T I O N  

In a recent  con t r ibu t ion  to this j ou rna l  by  us ( Jagannathan ,  S a n t h a n a m  
and  Vasudevan,  1981 hereaf ter  referred to as I) the form of  q u a n t u m  
mechanics  in which the SchrOdinger opera to rs  for  pos i t ion  and m o m e n t u m  
obeying  Heisenberg ' s  canonica l  commuta t ion  rela t ions are  r e p l a c e d  b y  
f in i te -d imens ional  matr ices  consis tent  with Weyl ' s  form of He i senbe rg ' s  
re la t ion has been called f in i te -d imensional  qua n tum mechanics  ( F D Q M )  
and  the one-d imens iona l  version of  such a F D Q M  has been  deve loped .  This  
p a p e r  cont inues  the discussion of the mathemat ica l  s t ructure  and  the 
phys ica l  s ignif icance of the F D Q M  with the genera l iza t ion of  the theo ry  for  
the case of  the three-d imensional  space. Essential ly,  in our  opin ion ,  F D Q M ,  
ins tead  of  the  usual Sch r6d inge r -He i senbe rg  fo rmal i sm of  q u a n t u m  me-  
chanics,  would  give the correct  descr ip t ion  of the physics  of  a pa r t i c l e  
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totally confined to move within a finite region of space whatever may be the  
forces causing such a confinement, and hence this study must be of 
significance in the present stage of development of the theory of quarks. 
Then the current quantum mechanical formalism, in which for such a c~ase 
coordinate and momentum operators with unbounded spectra are u sed  
along with suitable boundary conditions, would be an asymptotic approxi- 
mation. 

Though Weyl (1932) had expressed the view that the finite-dimensio~nal 
representations of his form of Heisenberg's canonical commutation relations 
might play a fundamental role in the future development of quantum 
mechanics, particularly in the realm of nuclear physics, his work and the 
subsequent work of Schwinger (1960) employed such finite-dimensiomal 
representations of the unitary operators 0~ and ~ defined by 

O~ = exp( iaf i /h) ,  f i f(q) = - ih a-~ f_ 
oq 

= exp(if lO/h),  q f (q)  = qf(q)  

(1) 

(2) 

for a suitable set of values of the parameters a and fl only in the in- 
termediate step towards an understanding of the algebraic structure of the 
current quantum kinematics. Many direct physical applications of the 
finite-dimensional forms of the operators obeying the Weyl commutation 
relation 

(Y,,~ =exp( iaf l /  h ) I;'~(]~ (3) 

have been considered by Alladi Ramakrishnan and his collaborators (Alladi 
Ramakrishnan, 1972) as part of an extensive analysis of generalized Clifford 
algebras (see for instance, Alladi Ramakrishnan, 1971, 1972 for the 
mathematical literature on generalized Clifford algebras). Only very recently 
the possible fundamental implications of interpreting the finite-dimensional 
representations of the operators 0 and p consistent with (1)-(3), respec- 
tively, as the actual position and momentum operators of a particle have  
been analyzed fully and a FDQM has been developed for one-dimensional 
space by us in I starting from certain essential modifications of the ideas on 
the form of a quantum mechanics in discrete space discussed by one of u s  in 
detail (see Santhanam and TekumaUa, 1976; Santhanam 1977a, 1977b, 
1978). Barut and Bracken (1980) have also considered a particular generali- 
zation of the earlier work of one of us (Santhanam, 1977a) on the forax of 
quantum mechanics in discrete one-dimensional space to the case of three- 
dimensional space. Our approach to the construction of the FDQM in 
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three-dimensional space, presented here, is based on I and differs com- 
pletely from the work of Barut and Bracken (1980). 

Discretization of space-time has been discussed by several physicists for 
a long time from different points of view and in particular with reference 
to particle physics (see, for instance, Finkelstein, 1974; Lorente, 1974; 
Ginsburg, 1976; Dadic and Pisk, 1979; Stovicek and Tolar, 1979; Tati, 
1980; Saavedra and Utreras 1981; for recent discussions of the subject and 
detailed references to earlier literature). As already emphasized in I the 
basic difference between our ideas and the earlier ideas is that in our  work 
the configuration space of any particular particle is considered to have an 
eigenstructure characteristically dependent on its mass and the possible 
extent of its motion in space and time is considered to be an independent 
continuous parameter as it is in the current quantum theory, instead of an 
absolutely quantized space-time common to all material particles with 
universal minima of length and time or some kind of lattice structure. Also 
independent coordinate operators are assumed to commute as usual in the 
current quantum theory (see Snyder, 1947; Barut and Bracken, 1980, for 
instances of assumptions of different kinds). 

In Section 2 we shall briefly review the one-dimensional formulation of 
the FDQM presented in I; in Section 3 we shall consider the basic 
mathematical structure of FDQM in three-dimensional space, and in section 
4 we shall conclude with the example of the derivation of the energy 
spectrum of a spherical oscillator enclosed in a spherical region of a 
particular radius P according to our new theory. 

2. FDQM IN ONE-DIMENSIONAL SPACE 

The formalism of FDQM as established in I can be briefly summarized 
as follows. If a particle of rest mass m is confined to move within a 
one-dimensional region of finite length L then Weyl's form (I)-(3)  of the 
Heisenberg commutation relation, 

[ q, P ] = ih (4) 

may be interpreted to imply that the dynamics of the particle depends on a 
FDQM based on the following set of basic principles: 

(i) The position eigenvalues of the particle form a discrete and finite set 
{qj,,) given by 

qj,, = n%,; n = - J , - J + l  . . . . .  - 1 , 0 , 1  . . . .  , J - 1 , J  (5) 

_ [  2~r ] , / z ,  ~ c _  h (6) 
" s - ~ ]  ~; 3(--2~r mc 
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and characterized by an integer J>~ 1, the "space quantum number," such 
that 

2J¢s <~ L < 2 ( J +  1)c j+ I (7) 

o r  

J =integer part of [x + ( x  + x2) '/z] (L2) w i t h x =  ~ (8) 

when there is no obvious distinction between positive and negative direc- 
tions with respect to the center of the region of length L taken as the origin 
of the coordinate system in the frame of reference in which the concerned 
region is at rest. In other words the quantum mechanical system space of the  
particle is a ( 2 J +  l)-dimensional vector space characterized by a unique 
integer-valued space quantum number J given by (8). Corresponding par-  
ticle operators are ( 2 J +  1)-dimensional matrices and the basic positi~3n 
operator Q:, for the given value of J, is defined by 

(nlQjln')= n,ja.., 

n , n ' = - - J , - J + l  ..... --1,0,1 .....  J - 1 , J  (9) 

in the position representation where e s is given by (6) and (hi-In') denotes 
the nn'-th matrix element as usual in the Dirac notation. 

(ii) The momentum operator Pf conjugate to Qj is given in position 
representation by 

[i2 s(on,] 
r/a ~] sexp ~--+~ 

<nlPjln'>= 2 J +  1 s=-J  

cosec 2 J  + 1 ] 

! i f n = n  , 

if n 4= n' 

n , n ' = - J , - J + l  . . . . .  - 1 , 0 ,  I . . . . .  J - 1 , J  (lo) 

~J = ( 2~r 1/2 
~f--+--( ) mc (1 1) 

and consequently the momentum eigenvalues of the particle also form a 
discrete and finite set {PJn} given by 

ps.=n~lj, n = - - J , - - J + l  ..... --1,0,1 .. . . .  J - 1 , J  (12) 
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(iii) If an observable K of the particle is represented by the operator 
/£(0,/~) in the normal quantum mechanical formalism then it will now be 
represented by the matrix operator K t(Qj, Ps) obtained from K(0,/~) by 
the rule of replacement 

O--'Qs, :--'Pj (13) 

with J chosen as in (8) and the eigenvalues of the matrix K r are the values 
that the observable K can take. For example 

p2 1 2/",2 = "J +=-mto ~J 
: 2m 2 

will represent the Hamiltonian operator corresponding to the nonrelativistic 
linear harmonic oscillation of the particle with space quantum number J 
and frequency t0 and the eigenvalues and eigenvectors of the matrix ~ j  will 
characterize the corresponding energy eigenstates. 

(iv) Except for the replacement of the usual infinite-dimensional 
Schrrdinger-Heisenberg operators by finite-dimensional matrices and the 
integrations over space by suitable finite summations all other aspects of the 
current quantum theory are valid in general. For example, Born's prob- 
abilistic interpretation of the state vectors is applicable, expectation values 
of the observables can be defined in the usual manner, Heisenberg's 
uncertainty principle exists since Qj and Pj do not commute, time is 
regarded as an independent continuous parameter, and the temporal devel- 
opment of the ( 2 J +  1)-component state vector [q'j(t)) is governed by the 
Schrrdinger equation, 

ih~l'Is(t)) = ~2j I'I'j (t)> (14) 

with 96 s as the Hamiltonian matrix or for any observable K the rate of 
change of the corresponding matrix operator in the Heisenberg picture can 
be defined by 

OK., 1 i (15) 

Let us conclude this section with the following observations: 
(a) The two simplest dimensionless constants (~jmc/h) and (,1.r/mc) 

that can be derived from the fundamental quantities, quantum of position 
or, quantum of momentum ~ls, rest mass of the particle m, Planck's constant 
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h, and the speed of light c are of equal magnitude given by 

~smc 7/s [ 2~r 1/2 
h - = 

(16) 

as seen from (6) and (11) so that 

j r/j _ 
h 

2~r 
2 J + l  

(17) 

and consequently Qs and Pj given by (9) and (I0) are canonically conjugate 
in the sense that 

exp( iaPj / h )exp( i/3Qs / h )=exp( ia/3/ h )exp( i/3Q~ / h )exp( iaPj / h ) 

Ot = nO j ,  /3 = n'~'lj 

n, n '=0,  ± 1 ..... ± ( 2 J - 1 ) , - + 2 J  (18) 

i.e., if we make the replacement, 0 --" Qj and/~ --, Pj, then Weyl's relation 
given by (1)-(3) is satisfied whenever a and/3, respectively, represent the 
shifts in position and momentum eigenvalues. 

(b) It follows from (6), (8), and (11) that 

a s L ~ ,  J--, ~ ,  ~s~0,  ~b --,0 (19) 

Now it can be verified easily that in this limit the spectra of position and 
momentum eigenvalues given in (5) and (12), respectively, become continu- 
ous ranging from - o o  to ~ and also 

lim Q.tl't'j) --, ~l'I') (20) 
J ~ o o  

lim PjI~j)--, pI ~ )  (21) 
J ~ o ~  

Thus when L is large compared to the Compton wavelength X c we can use 
as a very good approximation the SchrOdinger-Heisenberg formalism of 
quantum mechanics with infinite continuous eigenvalue spectra for q and  p 
and suitable boundary conditions on the wave function so that the particle 
is not found outside the region of confinement. This is just as demanded by 
the general philosophy of Bohr's correspondence principle. 

(c) The dimension of the matrices Q and P obeying Weyl's relation of 
the type in (18) can be chosen to be an event integer also, say 2N, and 
correspondingly the position and momentum spectra can be, respectively, 
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considered to be given by 

( - Jcj, - ( J -  1)(j . . . .  , - ½,g, ½~j,..., ( J -  1), j ,  Jcj} 

and 

{ - JT t j , - ( J - -1 )71 j , . . . ,  -- -fTls; ~71s,.: . ,(J--1)~lj,  J~lj) 

with J = N - 1/2 and suitable definitions of (j  and */j following the normal 
requirements that there should be symmetry between the two opposite 
directions. But in such a case we are forced to exclude the zero eigenvalue 
for momentum implying an a priori unreasonable assumption of a sort of 
inherent eternal motion for the concerned particle. Hence in any case the 
dimension of the matrices Q and P must be considered to be an odd integer. 

3. FDQM IN THREE-DIMENSIONAL SPACE 

Let us now consider that the coordinates of the particle are restricted 
to be within a spherical region of fixed radius p. In this case the system 
of spherical coordinates (r ,O,~) defined in the usual manner, with the 
center of the spherical region as the fixed origin, is the proper choice so that 
the resulting physical picture of the quantized configuration space of the 
particle is invariant under rotations of the coordinate frame about the 
origin. Then the theory of FDQM in three-dimensional space can be 
developed in close analogy with the one-dimensional case detailed above. 
The resulting formalism of the FDQM in three-dimensional space consists 
of three-dimensional versions, obtained by obvious generalization, of the 
rules (iii) and (iv) of Section 2 above for the case of one-dimensional space 
and the replacement of the corresponding rules (i) and (ii) by the following: 

(i) The eigenvalues of the radial coordinate r of the particle form a 
discrete and finite set (rjn) given by 

rjn=n(j ,  n = l , 2  . . . . .  2 J + l  (22) 

2~r (23) 

and characterized by an integer J >I 0, the "space quantum number," such 
that 

( 2 J +  1)~j <~p < ( 2 J  +3)~+1 (24) 
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o r  

p2 l )  (25) 
J =integer part of 4rrA 2 2 

Hence the matrix operator for the radial coordinate r, say R j, is given in 
position representation by 

<nlR~ln')=nEs6nn,, n , n ' = l , 2  .....  2 J + l  (26) 

where cj and J are determined by (23) and (25). The angular coordinates 0 
and qo take all values in the ranges [0, ~r] and [0,2rr], respectively, as usual. 
Thus in position representation the state vector of the particle is a (2J  q- 1)- 
component vector where each component is a function of 0 and % 

(ii) The radial-momentum operator PrJ, conjugate to R j, with respect to 
the corresponding Weyl relation, is given in position representation by 

I Oin'n, r 
<,, i ,,,r., I,,,> = L ""~-n c°sec[ 2~rJ(n--27.#_ln') ] 

i f n = n '  

if n=/= n ' 

n,n'-----1,2 .. . . .  2 J + I  (27) 

with the spectrum 

PrJn  = n ' q j  , n = - J , - - J + l  . . . . .  -1 ,0 ,1  . . . . .  S - l , J  (28) 

where 

[ 2~r ~,/2 
~D = ~ ~ ] mc (29) 

Since the angular coordinates 0 and 9~ are not quantized the operators 
involving only 0, ¢p and derivatives with respect to them can be retained in 
the same form as in the current quantum theory to represent the corre- 
sponding observables in FDQM. For example, the square of angular 
momentum L 2 will be represented in FDQM also by the operator 

[ sin 0 sin -~ 0 ~ 2  
(.3o) 

It is obvious that the other aspects of the FDQM in one-dimensional 
space detailed above can be generalized in a straightforward manner to the 
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case of the three-dimensional space. For example the usual nonrelativistic 
quantum Hamiltonian, 

~=~-m-m /~+p-'2- +V(P) (31) 

of the particle moving in a central field of potential V(r) will be now 
represented by the matrix-differential operator 

~Cj = ~ m ( e ~  + R;2Z;2) + V(Rj)  (32) 

operating on the (2J+l)-component wave function with the elements, 
((n, 0, ~p[ qj( t ) )[n = 1,2 .... ,2 J + 1}. All the eigenvalues of ~ :  can be shown 
to be real when V(Rj)  is real. In general while forming the operators in 
FDQM from the corresponding normal quantum mechanical operators in 
(r, 0, cp) representation only the radial coordinate and momentum operators 
are to be replaced, according to the rule, 

--, Rj ,  Pr ~ Prj (33) 

since in accordance with the correspondence principle 

as-p--, oe, J - ,  oo, e j - , O ,  7/j ---, 0 

(nl RjIn ' )  ~ (rlelr") = rS( r - r') 

(n lp~sln , )~(r l f i~lr , )=[ _ ih ~r ) r ] ~ ( r - r ' )  

(34) 

and the eigenvalue spectra of the angular coordinates /9 and ¢p are not 
affected by restricting the value of r to be ~< p. The dimension of the 
matrices Rj  and Pr: must also be odd for the reason similar to that 
mentioned in the case of one-dimensional space. It can be seen easily as in 
the one-dimensional case that when p >> X¢ the usual Schrrdinger-Heisenberg 
formalism of quantum mechanics becomes a very good approximation to 
the FDQM in three-dimensional space. In the application of the theory of 
FDQM to particle physics it is possible that we would have to consider J or 
p not as a fixed quantity but as a stochastic variable with a suitable 
probability distribution. For the description of a many-particle system in 
FDQM the direct product formalism must be used as usual in the normal 
quantum theory. 
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4. A N  E X A M P L E  O F  T H E  F D Q M :  A SPHERICAL HARMONIC 
OSCILLATOR 

In conclusion let us consider a spherical harmonic oscillator as an 
example of the application of the formalism of FDQM. Let the particle of 
mass rn be restricted to move within a spherical region of radius p such that  

~J  E 
o r J = l  (35) 

and subjected to a harmonic force field of potential 

V ( r )  = ½mwZr 2 (36) 

Then according to the rules of FDQM stated above, any stationary state 
vector of the particle is to be represented in this case by 

I'V)= ¢2(o,~) (37) 

and the corresponding time-independent Hamiltonian operator is given by 

1 2 ~=T~m(pr,+R?2L2)+ 1 :o~ -~mw ~x 1 (38) 

where 

(1 0 0) ( 2rt), /2 
R , = q  0 2 0 , q =  T X (39) 

0 0 3 

i~h ½ 0 _ 3  1/2 & = ~ , "Ill = mc 
w _~ ~ o 

(40) 

as obtained from (23), (26), (27) and (29). Following the usual factorization 
procedure in the central-field problems let us write an eigenvector of 9C in 
(38) as 

Xn) 
I ¢ ) = R ; ' l X t ) r , m ( O , ~ ) = R ,  ~ X,2 r ,m(O,~ ) 

Xt3 
(41) 
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Now the eigenvalue equation for ~ ,  namely, 

= El,t,> (42) 

becomes 

azlxl)=Etlxt), l = 0 , 1 , 2  . . . .  (43) 

with 

4 , =  

2 a + f l + r  - - a  - a  

- - a  2 a + ¼ f l + 4 y  - -a  

- - a  - a  2 a + ~ f l + 9 y  

r/~ 9 l ( l+  1)7/] 1 
a -  2 m '  f l -  81r2 m , 3,= mw2,~. (44) 

Then the three possible eigenvalues for E t can be shown to be given by 

Et,=a[2+14x+49y-2zcos(~3~)] (45) 

Et2=a[2+14x+49y ,, [rr+~ - z,:osl-T) ] 

where 

( ~t.,O )2, 1( /+ 1) 

x =  ~ y =  16~r 2 

z = (1 +49x z + 889y 2 -362xy) I/z 

~=minimum value of cos-,  I 14313+24013y3+39912y-lO731xy2-1 l z  3 

(48) 

Here the necessary condition that [cos ~l ~< 1 is satisfied as a consequence of 
the fact that all the eigenvalues of the real symmetric matrix H 1 must be real. 

When o~ and I are small or x ~ y  ~ 0, such that in the right-hand sides of 
(48) the terms containing x and y can be neglected in comparison with 1, we 
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have  z ~ 1, ~ ~ r  a n d  hence  

4 9 m c 2 l ( l  + I )  14~'h2~ 2 

E ~ l ~  t44r t  + - -  9mc  2 

71" 2 
El2 ~ El3 ~ -~ mc  + Ell ( 4 9 )  

These  resul ts  d e m o n s t r a t e  the r e m a r k a b l e  d i f ference  that  can  arise b e t v c e e n  
the  app l i ca t ions  of  the usua l  q u a n t u m  theory  and  the F D Q M  w h e n  the 

l a t t e r  is ac tua l ly  m o r e  appropr i a t e ,  i.e., O / X  C is no t  very  large. But  w l a e n  
O / X c  is very  large the resul ts  of  F D Q M  shou ld  no t  of  course differ  v e r y  

m u c h  f rom those of  the usua l  q u a n t u m  theory.  
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